Communications to the editor

STRUCTURE OF HEPTELIDIC ACID, A NEW SESQUITERPENE ANTIBIOTIC FROM FUNGI

Sir:

As reported in the previous paper,¹⁾ heptelidic acid was isolated from the culture broths of three different strains of fungi identified as *Gliocladium virens*, *Chaetomium globosum* and *Trichoderma viride*. It was characterized as a new skeletal sesquiterpenoid antibiotic with activity against anaerobic bacteria, especially against *Bacteroides fragilis*.

In the present communication structural elucidation of heptelidic acid (1) is presented. Treatment of 1 with diazomethane furnished a methyl ester (2). The molecular formula, $C_{18}H_{22}O_5$, of 2 was established from the mass and cmr spectral data. The ir spectrum of 2 indicated a lactone at 1750, ester carbonyl at 1720, double bond at 1640 and isopropyl at 1380 and 1370 cm⁻¹ in each characteristic region, but indicated none of hydroxy group. The pmr and cmr spectra (Table 1) of 2 displayed the partial structure

shown in Fig. 1 (a) and (b).

The structure of heptelidic acid was confirmed by following chemical evidences (Fig. 2). Hydrolysis of **2** with alkali followed by treatment with diazomethane afforded diester (**3**) (M⁺: 326). The presence of a hydroxy group at 3500 and ester group at 1720 cm⁻¹ in the ir spectrum of **3** indicated opening of a lactone ring. In the pmr spectrum of **3**, AB quartet at 5.05 and 5.08 ppm (Hd, He) of **2** shifted upfield to 4.36 (s) ppm. This signal was replaced downfield to 4.84 (s) ppm in its acetate **4** (M⁺: 368). The change in chemical shifts of Hd and He between **2** and **3** suggests

Protons			Carbons		
δ (ppm)	J (Hz)	Assignment	δ (ppm)	Coupling with proton	Assignment
7.24	4.5, 2.0, 1.5	Hc	170.3	S	>C=O
5.08	14.5, 2.0	He	165.7	S	>C=O
5.05	14.5, 1.5	Hd	145.1	d	-CH=
3.81	5.0	Hh	129.1	S	-C=
3.78	S	-OCH ₃	61.6	t	-CH₀-O
3.55	12.0	На	58.1	S	C
2.60	12.0, 10.0, 4.5	Hb	50.1		> < (0)
2.59	5.0	Hi	52.1	t	×O/CH ₂
2.15	m	Hg	52.1	q	$-OCH_3$
1.55	m	Hf	47.0	d	>CH-
1.5~2.5	m	$-CH_2 \times 2$	45.0	d	>CH-
0.99	7.0	$-CH_3$	42.2	d	>CH-
0.90	7.0	$-CH_3$	33.4	t	$-CH_2-$
			27.4	d	>CH-
			22.4	t	$-CH_2-$
			21.2	q	$-CH_3$
			15.1	q	$-CH_3$

Table 1. The PMR and CMR spectral data of 2.

the presence of oxygen at C_5 which is bonded to lactone carbonyl.

Reduction of 2 with LiAlH₄ in THF gave tetraol 5 (m.p. $158 \sim 160^{\circ}$ C, $C_{15}H_{28}O_4$). In the pmr spectrum of 5, a newly appeared singlet of methyl signal was detected at 1.31 ppm and a doublet at 7.24 ppm of olefinic proton of 2 shifted to 5.23 ppm (J=10 Hz) corresponding to a nonconjugated olefinic proton. A complicated multiplet (6H) at 3.6~4.4 ppm of tetraol 5 was clearly assigned to hydroxymethyl signals assembled with one ABX type methylene (4.21, 3.90 ppm, $J_1 =$ 11.5, $J_2=5.0$ and $J_3=3.5$ Hz) and two allylic methylene in the triacetate (6), which was obtained by acetylation of 5 in the conventional procedure. Treatment of 2 with periodic acid or perchloric acid in THF - H₂O gave lactonealcohol 7 (M+: 312) with ir bands at 3350 (hydroxy), 1780 (7-lactone), 1720 (ester) and 1650 cm⁻¹ (double bond). Acetate 8 (m.p. 108~ 110°C, C₁₈H₂₆O₇) was obtained by acetylation of 7, but the presence of unacetylated hydroxy was still observed at 3350 cm⁻¹ in its ir spectrum. In the pmr spectrum of 8, AB guartet (J = 10.0 Hz) at 4.2 ppm was assigned to the methylene bearing oxygen of γ -lactone, and another AB system (J=12.0 Hz) at 4.73 ppm was also assigned to the allylic acetoxymethyl group. The abovementioned results indicated that lactonization took place at α -epoxide to form a γ -lactone during periodate oxidation of 2. Therefore, an α epoxide was confirmed to be located at the β position from the lactone carbonyl. Reduction of 7 with LiAlH₄ in THF and oxidation of the

resulting pentaol **9** (m.p. 142°C, $C_{16}H_{28}O_5$) with periodic acid, followed by acetylation, afforded the keto-triacetate **10** (M⁺: 382). The absorption at 1710 cm⁻¹ in the ir spectrum of **10** strongly supported the presence of a six-membered ketone.

Finally, the stereochemistry of the ring junction and isopropyl group, except the α -epoxide ring, of **2** was assigned to trans and equatorial substitution from large coupling constant values $(J_{a,b} = 12.0 \text{ and } J_{b,f} = 10.0 \text{ Hz})$. Determination of the absolute configuration of heptelidic acid, including that of α -epoxide ring by X-ray analysis will be discussed in a separate report. Heptelidic acid was thus elucidated to have a new skeletal sesquiterpene lactone and it is assumed that this antibiotic is biogenetically derived from γ cadinene by oxidation.

> Yasuhiro Itoh Shuji Takahashi Tatsuo Haneishi Mamoru Arai

Fermentation Research Laboratories, Sankyo Co., Ltd. 2–58, 1-chome, Hiromachi, Shinagawa-ku, Tokyo 140, Japan

(Received February 8, 1980)

Reference

 ITOH, Y.; K. KODAMA, K. FURUYA, S. TAKA-HASHI, T. HANEISHI, Y. TAKIGUCHI & M. ARAI: A new sesquiterpene antibiotic, heptelidic acid. Producing organisms, fermentation, isolation and characterization. J. Antibiotics 33: 468~473, 1980

Fig. 2.